Name \qquad
Final Review - 3 of 3
For full credit circle answers and show all your work. Each problem is worth four points.

1) Solve the triangle:
2) Solve the triangle:

$A=$	$a=$
$B=40^{\circ}$	$b=$
$C=70^{\circ}$	$c=20$ in

$\mathrm{A}=60^{\circ} \quad \mathrm{a}=125 \mathrm{~m}$
$B=$
$\mathrm{b}=80 \mathrm{~m}$
$\mathrm{C}=\quad \mathrm{c}=$
3) Solve the triangle:

$$
\begin{array}{ll}
\mathrm{A}= & \mathrm{a}=7 \mathrm{mi} \\
\mathrm{~B}= & \mathrm{b}=12 \mathrm{mi} \\
\mathrm{C}= & \mathrm{c}=15 \mathrm{mi}
\end{array}
$$

4) Find the area using Heron's formula:

$$
\begin{aligned}
& \mathrm{a}=5 \mathrm{ft} \\
& \mathrm{~b}=7 \mathrm{ft} \\
& \mathrm{c}=10 \mathrm{ft}
\end{aligned}
$$

5) Explain why the Law of Cosines always give a correct solution while the Law of Sines only sometimes gives a correct solution.
6) Find a unit vector in the direction of: $<-3,4>$.
7) Find the component form of the vector with initial point $(-1,5)$ and terminal point $(15,12)$.

Let $\boldsymbol{u}=<3,4>$ and $\boldsymbol{v}=<12,-5>$ for 8-10.
8) Find $u \bullet v=\quad$ 9) Find the angle between \boldsymbol{u} and \boldsymbol{v}.
10) Find $\operatorname{proj}_{v} u=$
11) Find a unit vector in the direction of: $<-12,13>$.
12) Find the component form of the vector with initial point $(15,12)$ and terminal point $(-1,5)$.

Let $\boldsymbol{u}=<-3,4>$ and $\boldsymbol{v}=<6,8>$ for $13-15$.
13) Find $u \bullet v=$
14) Find the angle between \boldsymbol{u} and \boldsymbol{v}.
15) Find $\operatorname{proj}_{v} u=$
16) Solve the system of equations
algebraically:
$3 x+2 y=10$
$2 x+5 y=3$
18) Solve the system of equations:
algebraically:
$x+y=4$
$x^{2}+y^{2}-4 x=0$
17) Solve the system of equations: algebraically:
$-7 x+6 y=-4$
$14 x-12 y=8$
19) Solve the system of equations:
algebraically:
$x-2 y+3 z=5$
$-x+3 y-5 z=4$
$2 x+0 y-3 z=0$
20) Find the equation of a parabola that includes the points: $(2,0),(4,0)$, and $(6,8)$.
21) Determine the order of the matrix:
$\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
22) Write the matrix corresponding to the system of equations: $2 x+y-z+2 w=-6, \quad 3 x+4 y+w=1$ $x+5 y+2 z+6 w=-3,5 x+2 y-z-w=3$.
23) Solve the system of equations in \#2 using the matrix capabilities of your calculator. Write the matrix AND give the four solutions.
$\begin{array}{lll}\text { Matrix: } & x= & y= \\ z= & w=\end{array}$

$$
z=\quad w=
$$

Let $A=\left[\begin{array}{cccc}2 & 1 & -1 & 0 \\ 1 & -3 & -1 & 2 \\ 1 & 0 & 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 1 \\ 1 & 0 \\ -1 & 2 \\ -2 & -1\end{array}\right]$.
24) Find $A B$.
25) Find $B A$.

