Math 1470 – Fall 2007

Name_____ Final Review – 3 of 3

For full credit circle answers and **show all your work**. Each problem is worth four points.

1) Solve the triangle:		2) Solve the triangle:	
A =	a =	$A = 60^{\circ}$	a = 125 m
$B = 40^{\circ}$	b =	B =	b = 80 m
$C = 70^{\circ}$	c = 20 in	C =	c =
3) Solve the tr A = $\mathbf{R} = \mathbf{R}$	iangle: a = 7 mi b = 12 mi	4) Find the are a = 5 f	ea using Heron's formula: t
D –	0 = 12 mm	0 - 71	
C =	c = 15 mi	c = 10	ft

5) Explain why the Law of Cosines always give a correct solution while the Law of Sines only sometimes gives a correct solution.

6) Find a unit vector in the direction of:	7) Find the component form of the vector with
<-3,4>.	initial point (-1,5) and terminal point (15,12).

Let u = <3, 4> and v = <12, -5> for 8-10. 8) Find $u \bullet v =$ 9) Find

9) Find the angle between u and v.

10) Find $proj_{v}u =$

11) Find a unit vector in the direction of:	12) Find the component form of the vector with
<-12,13>.	initial point (15,12) and terminal point (-1,5).

Let $u = \langle -3 \rangle$, $4 \rangle$ and $v = \langle 6 \rangle$, $8 \rangle$ for 13 - 15. 13) Find $u \bullet v =$ 14) Find the angle between u and v.

15) Find $proj_v u =$

16) Solve the system of equations	17) Solve the system of equations:
algebraically:	algebraically:
3x + 2y = 10	-7x + 6y = -4
2x + 5y = 3	14x - 12y = 8

18) Solve the system of equations:	19) Solve the system of equations:	
algebraically:	algebraically:	
x + y = 4	x - 2y + 3z = 5	
$x^2 + y^2 - 4x = 0$	-x + 3y - 5z = 4	
	2x + 0y - 3z = 0	

20) Find the equation of a parabola that includes the points: (2, 0), (4, 0), and (6, 8).

21) Determine the order of the matrix:	22) Write the matrix corresponding to the system
$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	of equations: $2x + y - z + 2w = -6$, $3x + 4y + w = 1$
	x + 5y + 2z + 6w = -3, $5x + 2y - z - w = 3$.

23) Solve the system of equations in #2 using the matrix capabilities of your calculator. Write the matrix AND give the four solutions. Matrix: x = y =

w =

$$z =$$
Let $A = \begin{bmatrix} 2 & 1 & -1 & 0 \\ 1 & -3 & -1 & 2 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 2 \\ -2 & -1 \end{bmatrix}$.

24) Find *AB*.
25) Find *BA*.